A Taste of
Program\eribcation

Jorge Sousa Pinto
jsp@di.uminho.pt

Outline

Formal models and the central pblem of brmal methods
Introduction to Hoame Logicyeribcation ly hand

Specifying the belsmur of C programs

Case studyarray pattition algorithm

Outline

- ProgramAnnotation and DesignyoContract

- JMLTool Demo:ESC/3da2 + Simplify

- Tool Demo:Caduceus + Coqg

The Central Poblem
of Formal Methods

ModelsTools andApproaches

Abstract State Machines (B)
Automata-based Models
ProcessAlgebra (Estegl)

Set and Catenyy Theory (Z,VDM,Charity)
Algebraic Specibcations (OBJ)
Declaratie Modeling (ERETRS)

Peconditions ano$*Conditions

SR

The Central Poblem of FM

Pait 1: model validation

- How to enforce, at the specibcation Vel,the desied
behaiour?

Prove properties about the model

Tools for
Formal\Veribcation

- Proof Systems:
Theorem Povers / Poof Assistants

- Model Checkrs

The Central Poblem of FM

Pat 2: relation between speciPcations and implementati

- How to obtain,from a specibcatioan implementation with
the same behaour? ExtactionPogram Delvation

Or alternatiely,

- Given an implementatiomow can it be cheoid that it
obeys the specibcation? TestingPogram\enpcatior

Program Extraction

- From a poof of a logical psperty (typicaly concerning
existential quantibcationshe Coq system is gmble of
extracting a pogram into a working programming language

Program Derivation

- Stepwise Rebnemenbfn Specibcations to 8grams
(Z,VDM,B,E)
- Two gpproaches to corectness:

(1) the rePnement steps genergpeoof obligatiortbat must
be dischargederivations ae thus brmally veribed.

(1) the rePnement pocess is itselferiPed to be corect.The
derived programs ae thencorect ly construction

Program\eribcation

- Given a pogram and a specibcatiameck that thedrmer
conforms to the latter

- This is the on} goplicable method in marsituations

- THIS LECTUREN gproach to poogram eribcation based
on progiam annotatioand Hoae Logic

Hoare Logic

- A formal system that is usefldrf

- Correct by construction pogram derivatiol
extensie bibliograhy:
Kaldewvalj;Gries;Backhousd)ijkstra

- Our bcusProgram\Veripcation
- Formulas asséirthat if a gien precondition

nolds prior to program excutionthen a
postcondition will hold after excution

A Toy Programming Languac

Types (data and expssions):

! bool | int

var | exp['] | com | assert

Interpreted as expected.:

[bool] = {true,false}

[l = 0 2 0o

Espessionscommands and asderns ae interpreted
In a gien state of the ppgram

| = {x,v¥,z,...}
1 = | % [int]

[exp[']] = ! % [']

[com] % !,

[assert |

% {true, false}

Abstract Syntax

X, Y,Z,...

‘ var, int, exp[bool], exp[int], com, and assert

X, Y,2Z,...

tr ue | false
B&: B |B|B]|'B
E==E|E<E|E<=E|E>E|E>=E|E!=E

.1 211,012...|V]|L
|E|E+E|E! E|E"E|Ediv E|E modE

skip |[C;C |V =E |if Ethen CelseC |while(E)doC
tr ue | false

AGEA|A|A[A|#L.A|SLA|A % A
E==E|E<E|E<=E|E>E|E>=E|EI!=E

Interpretation of Expessions

[tr ue](s)
[false](s)

[n](s)

[x1(s)

[el(s)

[" el(s)

[e: %0 e](s)

true
false
n forn! {..." 2,"1,0,12,...}
|
s(x) if x ! dom(s)
otherwise

% true if [e](s) = false
false if [e](s) = true

% 4 it [el(s) = #

o [€l(s) if [el(s) $ #
if [e](s) =

| [e(s) %led(s) if [ed(s) $ # and [e:](s) $ #
otherwise

for ! { && , ||,==,<,<=,>,>=,1=+," /& div , mod }

[skipI(s)

[C1; Cal(s)

[x = E](s)

[if E.then E, else E;](s)

[whi le (E) do C]

S

(IC21" [C.d)(s)
o f[F1(s) = #
where[g" f](s) = g(f (s)) otherwise

six) [EI(s)] if [EI(s) $ #
otherwise

cond[E1], [E2], [E=])(s)

& f(s) if p(s) = true
and condp,f,g)(s) = " g(s) if E(s) = false
O # otherwise

PxF
whereF (f) = cond[[E],f ' [C],! x.x)

[tr ue](s)
[false](s)

['al(s)

[as && a](s)
[a: [| a2](s)

[a. ! &](s)

[e: < &](s) =

[e: == &](s) =

true
false

true iIf [e](s) = false
false if [e](s) = true

[a:l(s) and [a](s)

[a:1(5) or [221(S)

f [adl(s) then [a:](s)

" ed(s) < [el(©
false

" ed(s) == [e](

false

if [ed](s) = # and [e](s) = #
otherwise

if [ec](s) = # and [e](s) = #
otherwise

Interpretation ofAssetions (2)

[e: <= &](s)

[e:r > e)](s)
[e: > = &](s)
[ei! = &](s)

[$ x. a](s)
[x. a](s)

[(e1 < &) || (er == &)]l(s)
[!'(e1 <= &)](s)

['(e1 < &)](s)

['(er == ey)](s)

for every v %o[int], , [al(s)[x &! v] = true

for somev %[int], , [a](s)[x &' v] = true

Hoare Triple Formulas

{P} C{Q;}

P,Q : assert are closedwith respect to logical variables

C : com cortains no occaurrences of logical variables

meaning that if C escutes in a state wherP holds,
thenif C terminate® will hold upon termination

Semantics of HoaTriples

Given by the bllowing interpetation in{true, false}
using the semantics of astiens

[{P}C{Q}] = if [P1(s) then [QI(s)

for all statess,s'! ! sudc that [C](s) = s

P Q may contain occurences of pogram variables that
do not occur in C Such variables arcalled auxiligr

This is gpartial notion of comrectness since the
program is not guaranteed to terminate

If additionally the existence 0§Q0s required,we are
In the presence of total carectnessdrmulas.

{P} C{Q} and C terminates$ [P]C [Q]

Inference System

An inference system can be debned that desiony
valid Hoae triples: if

1P} C{Q}

IS derived then
[{P}C{Q}] = true

Skip and Composition

1P} skip{P}

{P} C.{Q} {Q} C2{R}

{P} Cy;Co{R}

Assignment

Works backwads

{Q[x &%} x := e{Q}

Example {X+1=4} X:=x+1 {X=4}

Conditional

{P &&B} C{Q} {P && 1B} Cr{Q}
{P}if B then C, else C;{Q}

Can you spot a minor impecision hee?

Loops

A fundamental notioraloop inarantis a poperty that
IS preseved by the body of a loop.e.if it holds as a

preconditiontogether with the loop conditiban it holds
as a post-condition

{I && B} C{l1}
{1} while (B)do C{l && AB}

The identibcation of loop variants is a crucial task

Logical Rules

We also need rules thaketate assdrons with
specibcation®reconditions can be stingthened or
made disjuncts

P'o% P {P}C{Q}
{P}C{Q}

1P} C{Q} ... {Pn}C{Q}

{Pi]l ... |[Pn} C{Q}

More Logical Rules

Postconditions can be aalened or made conjuncts

1P} C{Q} Q% Q
{P}C{Q}

{P}C{Q ... {P}C{Qn}

PO . oo o)

More Logical Rules

O-ary casesdr conjunction and disjunction

{false} C{Q}

ExampleMeribcation ly Hand

Take the exponentiation function

exp(x,0) = 1
exp(x,n+ 1) = x! exp(x,n)

We intend to write a ppgramcalcexpsuch that

{true} calcexp{w = exp(X,y)}

In fact this needs to beetned with the help of
auxiliay variablesjot used ly calcexp

z = 1;

w:= 1;

while z <=y do
W= W?* X
Zz = z + 1;

{x=Xo" Y= Yo} calcexp {w=-exp(x,y)" x=Xo" Y= Yo}

{z= Xo" y= Yo} calcexp { w= exp(Xo, Yo)}

while z <=y do
W= W7* X,
B # z%vy =z + 1;

The loop condition:

The loop irvariantP:
P#I1" R" w= exp(Xg, Z%1)

| # X=Xo" VY=Y
[RE S 72k
P will grant the postcondition upon termination

P#I1" R" w= exp(Xg, Z%1)
Invariant pesewation

{P" B} C{P}

Z
Statt with assignment axioms

W .

while z <=y do

W * X;
z + 1;

{(1"1%$ z+1%$ y+1" w=expXo,(z+ 1) %1)} z :=

z+1 {P}

{1"0% z$ y" w=exp(Xop, 2)} z =

(A1)

z+1{P}

P#1" R" w= exp(Xqg, Z%1)
Invariant pesewation while z <=y do

{P" B} C{P} W= W?* X;
Zz = z + 1;

A second assignment axiom

{1"0% z% y" w! x=-exp(Xg,2)} w:i= wx{l" 0% z$ y" w= exp(Xo, 2)}

Simplifying and sgtngthening the mcondition we get:

{1#1! z! y#w=exp(Xp,z& 1)} w := wxx {| # Z%0# w = exp(Xog, 2)}

P#1" R" w= exp(Xo, z%1)

Thus

(A2)

{P#B} w:= wx{l # z%0# w= exp(Xo, 2)}

And these can n@ be sequenced

Ao A1
{P#B} C{P}
{P} while B do C{P # AB}

Similary for the initializationsgoing backwaadls

{f1rr1" z" y+1! 1=exp(Xg,z# 1)} w:= 1{P}

{1} z :

1{11 1" z" y+ 1! 1= exp(Xo, z# 1)}

(A3)

(As)

Sequencing:

A Ar
Aq Az | {P! B} C{P}’
{1}z:=1 w:= 1{P}’ {P} while B do C{P! AB}

{1}z := 1; w:= 1; while Bdo C{P! AB}

and the postcondition can beealened:

P! AB %& |! R! w=exp(Xg,z# 1)! AB
%& |! w=exp(Xg,z# 1! z=y+ 1
=& |! w=exp(Xop,Y)

=& | I w= eXp(Xo,Yo)

Dealing withArrays

Arrays can be teated as families of variables ineéy
Integers.

Naive axiom:

{Qlay &%} & = e{Q}

What® wrong?

Dealing withArrays

The solution is to substitute aays monolithical

{Qa!" a'®]} & = e{Q}

Ge) _ ax fork# |
% T o fork=i

Procedures / Functions

Introduce functional component in the
language (ALGOL-style)

Allows Por recursivy depnitions and an
additional souce of non-termination

Two classes of identibe@ssignable variabl
and abstraction variables

QuantiPers can beofmalized with lambdas

f(x) {

return x+Kk:

}

Interference

fa=f (b)) k:=k+1 {a=Tf(b)

Pointers

Classic poblems...

1U°q = X} *p:=*p+1 {"q = X}

Total Correctness

The identibcation of a deeasingraliantexpression
IS necessarto gurantee that eery loop terminates

[| && B && V == n]C[l && V < n] | 8& B " V >=0

[l Jwhile (B)do C[l && AB]

Realistic Languages

The problems that need to be ahlessed seem
dauntinghowever:

-all hare been studied at the theetical laevel
(beyond our scope)

-most impottantly, tools exist that supparfull
languages (including object-orienteatlres)

Exercise 1

void swap(int X[], int a int b)
{ aux = Xa]; Xa] =Xb]; b =

1.Write specibcation
2. Prove correctness of function

aux; }

Exercise 2

Recall thepattitionfunction used B the
guicksot algorithm. \erify inbrmally:

1.Write a Specibcation

2. Examine suggested implementation
3. Identify loop Ivariant

4. Check initial conditions and psevation
5. Identify loop variant

6. Check Pnal conditions

G AR A1)

Int partition (int A], int p, int r)
{
X =Ar];
I =p-1
for (j=p ; j<r ; j++)
It (Al <=Xx) {
| ++
swap(A i, |);
}
swap(A i+1, r);
return i +1;
}

u Analise de Correc@ao D Invariante u
No in&io de cada iteratao do ciclo f or tem-separa qualquer posidao k do vector:
1. Sep! k! ientao AK]! x;

2. Sei+ 1! k! j" 1entao AK] > X;

3. Sek =r entao Ak] = x.

| L IGY G g 5[

Veribcar as propriedades de inicializadao (] = p, | = p" 1),
presavaidao, e terminadao (] =r)

0 que fazem as duas ultimas instrugees?

Algorithms slide

Jmp Forward

Something Missing!

- It is still required to check that the elements arthe same ir
the input and in the output aays!

- A particular case of the mblem of specifying that v
arrays contain the same elements

= Andsame mmber of occuencesmultiset equalisather than
set equality

A Prst attempt

k:p" k" r:(#:p" I" r:Alk]= B[]$All]= B[K])

What® wrong with it?

Second attempt

HK :pS kS r:(%:pF 1% r:Alk]l= Bll])
&
HK:pS KSr:(%:p$ 13 r:Blk]= AJl])

What® wrong with it?

Third attempt

Use a logical theagrfor multi-sets and a functiomset
that abstracts an aay into the nultiset of its elements

mset (A) = mset (B)

This requires a pover with suppot for theories
like setsmultisetssequencestkor else userdebned
theories

ProgramAnnotation
and
Automated Static
Checking

Why Annotate Pograms?

A practical and accessible interfamecibcatianethod
Specify the semantics together with the syntax

Do not worry about bllowing a pescribed design method
as Is the case with mosbifimal methodologies

OLight@ifmal methodsdr everyday programmers?

Applications

= Dynamic checking
- Test-case generation
- Static Checking

- Documentationregister design decisions and
Implementation steps

- Design ly Contract

Design ly Contract

- A software development methodinitiated with Ei#l,based
on contracts betveen clients and classes
(dynamicayl-checled)

- Client guarantees cé&iin (pre-)conditions bedre invoking

methods and mathen assume other (post-)conditions aft
Invocation

Design ly Contract

- Class nust ensue certain (post-)conditions hold after
methods hae been called and mdor this efect assume
given (pre-)conditions

- Advantageseasoning/modularityplame assignment
eliminatedeknsivelwed&ing(practical and efbcient!!!)

JML
(J&a Modelling Language)

A standad annotation languagerf JML
Is itself ery close to J&a (easy to learn)

Mary tools hae adheed to the standast and ae now

JML-compliant

Imperatie subset has been gutad to other languages (C)

JMLASsetions

¥ preconditionkeyword requires
¥ postconditiongyword ensures
¥ (class and loopjwvarants

keywordsinvariant

andloop_invariant

JMLASsetions

¥ Added as special comments ivaddples
@ ... @*
o ...
¥ Properties written as Ja boolean exmssions

¥ With extra operators...

JML Operators

¥ Quantibcation:

(\forall ... ; ... ;...)
(\exists ... ; ...; ...

¥ variable value at enyr\old(...)

¥ method return value\result

Class Inariants

¥ Universal poperties of class and instance
variables (valid all the time)

¥ Must be pesewed by all the methods in a
class

¥ Implicitly, it is as If thg were patt of every pre-
and postcondition

Other JML Stuff

¥ exceptions (kyword signals)
¥ frame conditions
¥ pure methodspure

¥ non_null annotations

¥ ad hoc assdmons:\assert

Static Checking

Dynamic checkingeribPes on} the execution pathsdllowed
In one run of the pogram

Static checking examinall possible ezgution paths

The location of the warnings thatairssued is not wher
they occur (as in run-time) but wherthey are created

Typicaly unsoun@ndincomplet& increase cost-
effectiveness (automatic theem prover, not interactie)

UnderlingArchitecture

eneral
(9) Hoare Logic
AL ﬁ [VCGen]
Program
5 Counter
L Examples

Proof

M s

First Order Logic

Proof
. Tool |

ESC/Ja and ESCAa?

- Development Stoy:DEC / Compaqg / HPeaseach labs
- ESC/da2Kodak and UC Dublingseachers
(update to caver full IML ande¢ \ersions of Ja)

- JML-basedttempts to check consistency of code with
annotationsautomatically

= Current wersions use th&implify theorem prover

ESC/Ja and ESCAa?

= Typical successful checkslil dereferencingput-of-bounds
array indees (run-time exceptions). Saetychecking

- Annotations mg both suppess warnings (jg-condition
prevents warning) and generatewavarnings (pe-
conditions m# possiby not be met)

Jimp back

DEMO

ESC/3d&a2 eclipse plugin

swap / pattition example

Limitations Highlightedyb
Partition Example!

k:p" k" r:(#:p" I" r:Alk]=B[]$All]l= B[K])

What® wrong with it?
Too Strong! Hovever, ESC/Jda pioves this
(an example of unsoundness)

Second attempt

HK :pS kS r:(%:pF 1% r:Alk]l= Bll])
&
HK:pS KSr:(%:p$ 13 r:Blk]= AJl])

What® wrong with it?
Too weak! Hovever, ESC/Ja fails to pove it
(an example of incompleteness)

