Contract-based Slicing helps on safety Reuse

Sérgio Areias, Daniela da Cruz, Jorge Sousa Pinto
Departamento de Informdtica
Universidade do Minho
Braga, Portugal
{danieladacruz,jsp} @di.uminho.pt

Abstract—In this poster we describe a work in progress
aimed at using a variant of specification-based slicing to
improve the reuse of annotated software components, developed
under the so called design-by-contract approach. We have
named this variant as contract-based because we use the
annotations, more precisely the pre and post-conditions, to slice
programs intra and inter-procedures. The idea, expressed in
the poster, is to take the pre-condition of the reused annotated
component as slicing criterion, and slice backward the program
where the component is called. In that way, we can isolate the
statements that have influence on the variables involved on the
pre-condition and check if it is preserved by that invocation,
or not.

Keywords-Component
contract; slicing.

reuse; safety reuse; design-by-

I. INTRODUCTION

Reuse is a very simple an natural concept, however its
practice is not so easy. According to the literature, selection
of reusable components has proven to be a difficult task [1].
Sometimes this is due to the lack of maturity on supporting
tools that should easily find a component on a repository
or library [2]. Also, non experienced developers tend to
reveal difficulties when describing the desired component in
technical terms. Most of the times, this happens because they
are not sure of what they want to find [2]. Another barrier
is concerned with reasoning about component similarities in
order to select the one that best fits in the problem solution;
usually this is an hard mental process [1].

Integration of reusable components has also proven to be
a not easy task, since the process of understand and adapt
components is difficult, even for experienced developers[1].
Other challenge to component reuse is to certify that the
integration of such component in a legacy system is correct.
This is, to verify that the way the component is invoked will
not lead to an incorrect behavior.

A strong demand for formal methods that help pro-
grammers to develop correct programs has been present in
software engineering for some time now. The Design by
Contract (DbC) approach to software development facilitates
modular verification and certified code reuse. The contract

This work is funded by the ERDF through the Programme COMPETE
and by the Portuguese Government through FCT - Foundation for Science
and Technology, project ref. PTDC/EIA-CCO/108995/2008

for a component (a procedure) can be regarded as a form
of enriched software documentation that fully specifies the
behavior of that component. So, a well defined annotation
can give us most of the information needed to integrate a
reusable component in a new system, as it contains crucial
information about some constraints safely obtaining the
correct behavior from the component.

In this context, if we use the annotations to verify the
validity of every component’s invocation, then we can guar-
antee that a correct system will be still correct after the
integration of that component. This is the motivation for our
research: find a way to help on the safety reuse of compo-
nents. For such purpose we are currently developing a tool
to identify when an invocation is violating the component’s
annotation, and display, whenever possible, a diagnostic or
guidelines to correct it.

II. SAFETY REUSE OF SOFTWARE COMPONENTS

As referred in the previous section, our goal is to make
easier the process of incorporate an annotated component
into an existent system. This integration should be smooth,
in the sense of that it should not turn a correct system into
an incorrect one.

To assure this we need to verify a set of conditions with
respect to the annotated component and its usage: verify its
correctness with the respect to its contract; given a concrete
call to the reusable component, verify if the concrete calling
context preserves the precondition; given a concrete call and
the postcondition of the component, verify if it is properly
used in the concrete context after the call; given a reusable
component and a set of calling points, specify the component
body according to the concrete calling needs.

To verify the correctness of the component with respect
to its contract, we have available multiple tools to do that
validation (Esc/Java!, Krakatoa, etc). These tools usually
have as basis a Verification Condition Generator (VCGen),
to generate from the contract a set of proof obligations that
are then submitted to a theorem prover. For this step we
intend to use a tool, developed in the context of a PhD,
called GamasSlicer? [3].

Uhttp://sort.ucd.ie/products/opensource/ESCJava2/
Zhttp://gamaepl.di.uminho.pt/gamaslicer

To verify if the component invocations respect both the
precondition and postcondition we will resort to slicing tech-
niques. Traditional program slicing is a syntactic technique,
but semantic forms have also been studied for over 10
years now, which combine slicing techniques with program
annotation and verification, to identify synergies and take
advantage of good practices on both sides[4], [5], [6].

In the context of GamasSlicer project, we have introduced
a new concept: the contract-based slice of a program. A
contract-based slice can be calculated by slicing the code
of each procedure individually with respect to its contract
(what we call an open slice), or taking into consideration the
calling context of each procedure inside a program (which
we call a closed slice).

Given an annotated procedure p;, we infer from a specific
call (occurring in the body C' of another annotated procedure
p) a specific postcondition that we use to slice the callee
P1, keeping just the statements of its body C; that are
actually relevant for that postcondition. The new procedure
p}, whose body is the slice C], can be seen as a specialized
version of the original p;. Actually, we go one step further
and take into consideration all calls to the annotated callee
p1 inside the current program. In this way, we obtain a
closed slice that satisfies the conditions of all the calls but
from which useless statements (with respect to that program)
have been removed.

To illustrate our idea, please consider the Example 1
listed below that computes the maximum difference among
student ages in a class. This component reuses the annotated
component Min, defined also in Example 1, that returns the
lowest of two positive integers.

Example 1 DiffAge

public int DiffAge() {
int min = System.Int32.MaxValue;
int max = System.Int32.MinValue;

System.out. print (”Number of elements: 7);
int num = System.in.read ();
int[] a = new int[num];

for(int i=0; i<num; i++) {
a[i] = System.in.read ();

// calculating max and min
for(int i=0; i<a.Length; i++) {
max = Max(a[i],max); min = Min(a[i],min);

int diff = max — min;
return diff;
}
/+@ requires x >= 0 && y>=0;
@ ensures (x > y)? \result == x : \result == y;
@x/
public int Min(int x, int y) \{
int res = X — y;
return (res > 0)? x : y);
\}

The first step in this process, analyzes the Min invocation
and builds a list with all the identifiers referred on it. In
the second step, a backward slicing process is activated for
all symbols in the list created in the previous step. Then,
using the obtained slices, starts the detection of contract
violations. For that, the precondition is back propagate along
the slice to verify if it is preserved after each statement.
Observing the slice for the array a, listed in the example
2 below, it can not be guaranteed that all integer elements
are greater than zero; so a potential precondition violation is
detected. The third step consists in the notification of all the
contract violations detected. In the example above, the user
will receive an warning alerting to the possible invocation
of Min with negative numbers (what does not respect the
precondition). Besides the traditional error messages that
should be issued at this point, we plan to include a visual
aid. The tool will display a Labeled Control Flow Graph [7]
exhibiting all problems identified.

Example 2 Backward Slicing for a[i]

new int[num];
0; i<num; i++) {
System.in.read ();

int[] a =
for(int i=
ali] =
for(int i=0; i<a.Length; i++) {
max = Max(a[i],max); min = Min(a[i],min);
}

REFERENCES

[1] N. A. M. Maiden and A. G. Sutcliffe, “People-oriented soft-
ware reuse: the very thought,” in Advances in Software Reuse -
Second International Workshop on Software Reusability. 1EEE
Computer Society Press, 1993, pp. 176-185.

[2] K. Sherif and A. Vinze, “Barriers to adoption of software reuse
a qualitative study,” Inf. Manage., vol. 41, no. 2, pp. 159-175,
2003.

[3] D. da Cruz, P. R. Henriques, and J. S. Pinto, “Gamaslicer:
an online laboratory for program verification and analysis,” in
Proceedings of the 10th Workshop on Language Descriptions
Tools and Applications (LDTA’10), 2010.

[4] J. J. Comuzzi and J. M. Hart, “Program slicing using weakest
preconditions,” in FME ’96: Proceedings of the Third Inter-
national Symposium of Formal Methods Europe on Industrial
Benefit and Advances in Formal Methods. London, UK:
Springer-Verlag, 1996, pp. 557-575.

[5] L. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon, “Program
slicing based on specification,” in SAC ’01: Proceedings of the
2001 ACM symposium on Applied computing. New York, NY,
USA: ACM, 2001, pp. 605-609.

[6] C.Fox, S. Danicic, M. Harman, and R. M. Hierons, “Backward
conditioning: A new program specialisation technique and its
application to program comprehension,” in /IWPC. IEEE
Computer Society, 2001, pp. 89-97.

[71 J. Barros, D. da Cruz, P. R. Henriques, and J. S.
Pinto, “Specification-based Slicing and Slice Graphs,” 2010,
unpublished draft, available from http://alfa.di.uminho.pt/
~danieladacruz/specificationSlice.pdf.

