Alcino Cunha

SPECIFICATION AND MODELING

TYPE SYSTEM

Universidade do Minho & INESC TEC

2019/20

SAME ORIGIN POLICY

SPECIFICATION AND MODELING / SAME ORIGIN POLICY 351

SAME ORIGIN POLICY

http://mybank.com/private.php

http://evilsite.com/page.php

http://evilsite.com/script.is

‘Understand and verify the policy:

e Resources can only access resources from the same origin

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

END-POINTS AND HTTP EVENTS

sig EndPoint {}

sig HTTPEvent {
from : set EndPoint,
to : set EndPoint

EEEEEEEEEEEEEEEEEEEEEEEE 1 SAME ORIGIN POLICY

END-POINTS AND HTTP EVENTS

HTTPEventO HTTPEventl
from to to
from
\l

EndPointl ‘ EndPoint0

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

6/51

END-POINTS AND HTTP EVENTS

sig EndPoint {}

sig HTTPEvent {
from : set EndPoint,
to : set EndPoint

fact {
all h : HTTPEvent | one h.from and one h.to

MULTIPLICITIES

SPECIFICATION AND MODELING / MULTIPLICITIES

8/5

MULTIPLICITIES IN SIGNATURE DECLARATIONS

m € { some , lone, one }

msig A { }
sig A { }

fact {mA }

SPECIFICATION AND MODELING / MULTIPLICITIES

MULTIPLICITIES IN FIELD DECLARATIONS

m € { set, some, lone, one }

sig A{r :mB}

sig A{r : setB}

fact { all a : A | ma.r } if m # set

sigA{r :B} = sigA{r :oneB}

SPECIFICATION AND MODELING / MULTIPLICITIES

10/5

MULTIPLICITIES IN FIELD DECLARATIONS

m,n € { set, some, lone, one }

sigA{r :Bm->nC}
sig A{r : B set -> set C}
fact { all a : A, b : B Inb.(a.r) } if n # set

fact { all a : A, c : C Im(a.r).c } if m # set

sigA{r :B->C} = sigA{r: B set -> set C}

SPECIFICATION AND MODELING / MULTIPLICITIES

MULTIPLICITIES IN FORMULAS

m,n € { set, some, lone, one }

$dinAm->n8B

sigA{r :Bm->nC}
sig A{r : B set -> set C}

fact { all a : A| a.r in Bm->ncC }

SPECIFICATION AND MODELING / MULTIPLICITIES

2/5

BESTIARY

H H B H

=

in
in
in
in
in
in
in

r in

r in

in

> > > >

-> some
-> lone
some ->
lone ->

W W W w

-> one B
lone -> some B
some -> lone B

lone -> one B
some -> one B

one -> one B

//
//
/7
//

//
!/
//

//
//

//

is
is
is
is
is
is

is

is
is

is

entire

simple

surjective

injective

a function (entire + simple)

a representation (entire + injective)

an abstraction (simple + surjective)

an injection (function + representation)
an surjection (function + abstraction)

a bijection (injection + surjection)

SAME ORIGIN POLICY

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

END-POINTS AND HTTP EVENTS

sig EndPoint {}

sig HTTPEvent {
from : one EndPoint,
to : one EndPoint

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

END-POINTS AND HTTP EVENTS

HTTPEventO

HTTPEventl

HTTPEvent2

EndPointl

from to \:0 to
rom rom
Y Al

EndPoint0

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

6/5

SERVERS AND CLIENTS

sig EndPoint {}

sig Server in EndPoint {}
sig Client in EndPoint {}

fact {
no Server & Client
EndPoint = Server + Client

SUB-TYPING

SPECIFICATION AND MODELING / SUB-TYPING

8/5

EXTENSION SIGNATURES

s All extensions of a signature are disjoint
e Signatures that are not extended are known as atomic

sig A {}

sig B,C extends A {}
sig A {}

sig B,C in A {}

fact { noB & C}

SPECIFICATION AND MODELING / SUB-TYPING

19/5

ABSTRACT SIGNATURES

e An abstract signature has no atoms outside its extensions

abstract sig A {}
sig B,C extends A {}
sig A {}

sig B,C in A {}

fact { noB & C}

fact { A =B + C}

SPECIFICATION AND MODELING / SUB-TYPING 20/51

ENUMERATIONS

abstract sig A {}
one sig B,C,D extends A {}

enum A {B,C,D}

SAME ORIGIN POLICY

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

22/51

SERVERS, CLIENTS, REQUESTS, AND RESPONSES

abstract sig EndPoint {}
sig Server,Client extends EndPoint {}

abstract sig HTTPEvent {
from : one EndPoint,
to : one EndPoint

}

sig Request, Response extends HTTPEvent {}

fact {
Request.from + Response.to in Client
Request.to + Response.from in Server

SERVERS, CLIENTS, REQUESTS, AND RESPONSES

Request

Response0

Responsel

Client

\\\Qiz o \fr i;//4;;n1

Server

THEMES

SPECIFICATION AND MODELING / THEMES.

THEMES

25/51

s Complex instances are difficult to understand

e Itis possible to improve the visualisation with themes
> Different colors and shapes for different entities
> Hide irrelevant entities

> Project over a signature
»

s Good themes considerably simplify the validation task

SAME ORIGIN POLICY

SPECIFICATION AND MODELING / SAME ORIGIN POLICY 27151

SERVERS, CLIENTS, REQUESTS, AND RESPONSES

Request

OVERLOADING

SPECIFICATION AND MODELING / OVERLOADING 29/51

OVERLOADING

e Relations can be overloaded

sig A { }
sig B extends A { r : set A }
sig C extends A { r : set A }

e As long as domain signatures are disjoint

sig A{r : set A}
sig B extends A { r : set A }

A type error has occurred:
Two overlapping signatures cannot have

two fields with the same name "r":

SAME ORIGIN POLICY

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

SERVERS, CLIENTS, REQUESTS, AND RESPONSES

abstract sig EndPoint {}
sig Server,Client extends EndPoint {}

abstract sig HTTPEvent {}

sig Request extends HTTPEvent {
from : one Client,
to : one Server

}

sig Response extends HTTPEvent {
from : one Server,
to : one Client

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

32/5

REDIRECTS AND LINKING REQUESTS TO RESPONSES

abstract sig EndPoint {}
sig Server,Client extends EndPoint {}

abstract sig HTTPEvent {}

sig

sig

}

sig

Request extends HTTPEvent {
from : one Client,

to : one Server,

response : lone Response

Response extends HTTPEvent {
from : one Server,

to : one Client,

embeds : set Request

Redirect extends Response {}

SPECIFICATION AND MODELING / SAME ORIGIN POLICY 33/5

REDIRECTS AND LINKING REQUESTS TO RESPONSES

Request0 Requestl

from

to to

Server

TYPE ERRORS

SPECIFICATION AND MODELING / TYPE ERRORS.

35/5

TYPE ERRORS

s A good type system for modeling should support sub-typing and overloading
e But what should be the type errors in this setting?

Formula Result
some Request.response OK
some Redirect.response Error

no Redirect.embeds ”
some HTTPEvent.response ”
no (Request + Redirect).response ?7?

some HTTPEvent.to 2

SPECIFICATION AND MODELING / TYPE ERRORS 36/51

TYPE ERRORS

e An expression may trigger an irrelevance error
> If it can be replaced by the empty relation without affecting the meaning of the
enclosing formula
e An overloaded relation may trigger an ambiguity error
> If it cannot be decided which case it refers to

Expression Result Why
some Request.response OK
some Redirect.response Error Redirect.response isirrelevant
no Redirect.embeds OK
some HTTPEvent.response OK
no (Request + Redirect).response Error Redirect is irrelevant

some HTTPEvent.to Error to is ambiguous

SPECIFICATION AND MODELING / TYPE ERRORS.

TYPES

3715

e The type of an expression is a set of tuples of atomic types

s The type characterises the upper-bound of the expression - which tuples may be
contained in it

s For every non abstract signature we assume the existence of an atomic type
containing its remainder
> $Response is the remainder of Response
> It contains the atoms of Response that are not in Redirect

e Overloaded relations are treated as the union of all cases
> toisan aliasto Request<:to + Response<:to

SPECIFICATION AND MODELING / TYPE ERRORS.

TYPE INFERENCE

38/51

e The type inference mechanism determines the type of all relational expressions
> If the type is empty the expression is irrelevant and an error is reported
> In an overloaded relation, only one of the disjunct cases can be relevant, otherwise an
ambiguity error is reported
e The type inference mechanism is guided by the abstract syntax tree and proceeds
in two phases
> A first bottom-up phase computes the bounding types ® T T
> These are refined by the second top-down phase to compute the relevance types ® | T

SPECIFICATION AND MODELING / TYPE ERRORS 39/51

BOUNDING TYPE INFERENCE

s The bounding types of the declared signatures and relations are inferred from their
declarations

e The bounding types of compound expressions are computed from the bounding
types of sub-expressions using the same operator

SPECIFICATION AND MODELING / TYPE ERRORS

BOUNDING TYPE INFERENCE

Request T {(Request)}

Redirect T {(Redirect)}

Request + Redirect T {(Request),(Redirect)}
response T {(Request,Redirect), (Request, $Response)}

(Request + Redirect).response T {(Redirect),($Response)}

SPECIFICATION AND MODELING / TYPE ERRORS wls

RELEVANCE TYPE INFERENCE

e The relevance type of the outermost expression is equal to its bounding type
s The relevance type of sub-expressions are computed by determining which tuples
of its bounding type contributed to the relevance type of the parent expression

SPECIFICATION AND MODELING / TYPE ERRORS.

RELEVANCE TYPE INFERENCE

(Request + Redirect).response | {(Redirect),($Response)}
response T {(Request,Redirect), (Request, $Response)}
Request + Redirect T {(Request),(Redirect)}

response | {(Request,Redirect), (Request,$Response)}
Request + Redirect | {(Request)}

Request T {(Request)}

Redirect T {(Redirect)}

Request | {(Request)}

Redirect | {}

SAME ORIGIN POLICY

SPECIFICATION AND MODELING / SAME ORIGIN POLICY !5t

REDIRECTS AND LINKING REQUESTS TO RESPONSES

fact RequestResponse {
-- Every response is associated with exactly one request
all r : Response | one response.r

-- Every response is to the endpoint its request was from,
-- and from the endpoint its request was to
all r : Response | r.to = response.r.from and

r.from = response.r.to

-- A request cannot be embedded in a response to itself
all r : Request | r not in r."(response.embeds)

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

45151

TRACKING ORIGINS

abstract sig HTTPEvent {
origin : one EndPoint

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

TRACKING ORIGINS

46151

fact Origin {
-- A redirect has the same origin as the original request
all r : Redirect | r.origin = (response.r).origin
-- The origin of other responses is the server they came from
all r : Response-Redirect | r.origin = r.from

-- The origin of a non-embedded request is the endpoint it came from
all r : Request | no embeds.r implies r.origin in r.from

-- Otherwise it is the same origin of the embedding response

all r : Response, e : r.embeds | e.origin = r.origin

SPECIFICATION AND MODELING / SAME ORIGIN POLICY 47l

TRACKING ORIGINS

pred EnforceOrigins [s : Server] {
-- A server enforces the origin header if
-- it allows incoming requests only if they originate
-- at that server or at the client that sent the request
all r : Request {
r.to = s implies r.origin = r.to or r.origin = r.from

SPECIFICATION AND MODELING / SAME ORIGIN POLICY 48151

TRACKING CAUSALITY

sig Server extends EndPoint {
causes : set HTTPEvent

SPECIFICATION AND MODELING / SAME ORIGIN POLICY w9151

TRACKING CAUSALITY

fact Causality {
-- An event is caused by a server if and only if
-- it is from that server, or is embedded in a response
-- that the server causes
all e : HTTPEvent, s : Server {
e in s.causes
iff
(e.from = s
or
some r : Response | e in r.embeds and r in s.causes)

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

50/51

CHECKING SECURITY

assert Secure {

-- Assuming the client never sends requests directly

-- to "bad" servers, a "good" server that is enforcing the origin

-- header cannot receive a request caused by a "bad" server

all good, bad : Server {
(EnforceOrigins[good]
no r : Request | r.to
implies
no r : Request | r.to

}
check Secure for 5 HTTPEvent,

and
= bad and r.origin in Client)

= good and r in bad.causes

3 EndPoint

SPECIFICATION AND MODELING / SAME ORIGIN POLICY

51751

COUNTER-EXAMPLE

Requestl
from: Client
origin: Client
t0: Server0

\response

\

Requesto
from: Client
origin: Server0

to: Serverl

Request2
($Secure_r)
from: Client

origin: ServerQ
t0: Serverd

	Same Origin Policy
	Multiplicities
	Same Origin Policy
	Sub-typing
	Same Origin Policy
	Themes
	Same Origin Policy
	Overloading
	Same Origin Policy
	Type errors
	Same Origin Policy

